Eixo Temático ET-04-002 - Recuperação de Áreas Degradadas

ATRIBUTOS DO SOLO E PROCESSOS DE DEGRADAÇÃO AMBIENTAL NO LIXÃO DE SANTO ANTÔNIO-RN

Rayane Dias da Silva¹, Amanda Caú Farias¹, Amanda Cristina Soares Ribeiro¹, Karina Patrícia Vieira da Cunha²

¹Universidade Federal do Rio Grande do Norte, Curso de Engenharia Ambiental – RN. E-mail: rayanedias2008@hotmail.com.

²Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Civil – RN. Email: cunhakpv@yahoo.com.br.

RESUMO

Como alternativa para minimizar os impactos decorrentes da disposição inadequada de resíduos sólidos em lixões o presente estudo objetivou avaliar a qualidade do solo o lixão ativo do município de Santo Antônio/RN e verificar os processos de degradação ambiental atuantes na área do lixão, a fim de auxiliar o processo de recuperação dessas áreas. Foram coletadas amostras de solo na área de lixão e em mata nativa como padrão de referência de qualidade. Aos quais foram submetidas às análises dos atributos físicos (densidade do solo, densidade de partículas e porosidade total), atributos químicos (pH e condutividade elétrica). As diferenças entre os atributos físicos e químicos do solo em relação a mata nativa demonstram redução da qualidade do solo na área do lixão, o que a recuperação ambiental da área.

Palavras-chaves: Resíduos sólidos; Sustentabilidade; Recuperação ambiental.

INTRODUÇÃO

A gestão de resíduos sólidos tem ganhado papel de destaque no cenário nacional acerca da sustentabilidade ambiental e da Política Nacional de Resíduos Sólidos (PNRS). No Brasil, 50,8% dos resíduos sólidos urbanos é destinado inadequadamente em áreas a céu aberto, também conhecidas como lixões, segundo a Pesquisa Nacional de Saneamento Básico (PNSB) de 2008 (IBGE, 2008).

A disposição final de resíduos sólidos urbanos, caracterizada pela simples descarga sobre o solo, sem critérios técnicos e medidas de proteção ao meio ambiente ou à saúde pública (LANZA, 2009), faz com que aumentem os riscos de contaminação do solo, das águas e do ar. Ao considerar o solo um sistema aberto e dinâmico, após alcançá-lo, a contaminação é disseminada aos demais componentes da bacia hidrográfica, e dessa forma, o solo passa a exercer a função de uma fonte difusa de contaminação.

No Estado do Rio Grande do Norte, a grande maioria dos municípios dispõe seus resíduos sólidos coletados em lixões a céu aberto, na ausência de medida de proteção sanitária e ambiental. O Estado apresenta 98,55% das áreas de disposição final dos resíduos sólidos caracterizadas com lixões e apenas 1,45% de aterros sanitários (SEMARH, 2012). A exemplo desses municípios que dispões os resíduos sólidos em lixão está o Município de Santo Antônio.

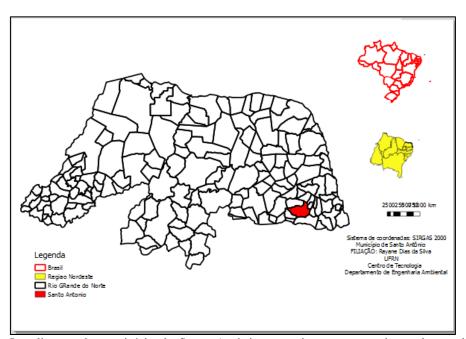
Levando em consideração que um dos grandes desafios da Política Nacional dos Resíduos Sólidos (Lei 12,305/10) é o passivo ambiental gerado pelos lixões, sob responsabilidade dos municípios (BRASIL, 2010), pesquisas que visem conhecer a dinâmica dos processos de degradação instalados em áreas de disposição final irregular de resíduos são de grande importância na atualidade. Principalmente, ao ressaltar que estas áreas deverão ser obrigatoriamente desativadas e direcionadas a um programa de recuperação ambiental (MMA, 2011).

A caracterização das áreas destinadas à disposição de resíduos, bem como o monitoramento dos resíduos aterrados, dos líquidos e gases gerados torna-se necessária para que sejam adotadas soluções viáveis e sustentáveis tanto do ponto de vista ambiental e sanitário,

como socioeconômico para evitar os possíveis impactos ambientais provocados pela disposição de resíduos (MELO; JUCÁ, 2000).

Uma alternativa para minimizar os impactos decorrentes da disposição inadequadas de resíduos sólidos em lixões é a estabilização da área a partir da revegetação, técnica que é conhecida como fitoestabilização. A fitoestabilização é uma técnica que garante eficiência, melhoria estética e visual da área degradada e de baixo custo quando comparada a técnica de escavação dos resíduos aterrados e remoção para aterros sanitários (REMON et al., 2005). Isso faz com que ela se torne uma técnica viável sob ponto de vista técnico e financeiro. Porém, para que a fitoestabilização seja aplicada a recuperação de uma área degradada, se faz necessária a melhoria da qualidade do solo para que esse possa suportar o crescimento vegetal sem comprometer os demais componentes da bacia hidrográfica.

OBJETIVO


O objetivo desse trabalho é a partir da avaliação de atributos físicos e químicos do solo e de vistoria na área verificar os processos de degradação ambiental atuantes numa área de do lixão ativo do município de Santo Antônio além de destacar possíveis medidas mitigadoras com a finalidade de recuperação da área.

METODOLOGIA

Área de estudo

O Município de Santo Antônio situa-se na região geográfica do Agreste Potiguar do Estado do Rio Grande do Norte (Figura 1), limitando-se com os municípios de Serrinha, Lagoa das Pedras, Lagoa D'Anta, Nova Cruz, Várzea, Passagem, Brejinho e São José do Campestre, abrangendo uma área de 294 km². Possui clima muito quente e semiárido, com estação chuvosa para outubro e temperatura média anual de 25,6 °C. Sua formação vegetal é do tipo caatinga hipertermófila, apresentando arbustos e árvores com espinhos de aspecto pouco agressivo (IDEMA, 2008).

A classe de solo no Município de Santo Antônio é Planossolo Solódico (EMBRAPA, 1971), possuindo alta fertilidade natural, textura arenosa, relevo suavemente ondulado, imperfeitamente drenados, ou seja, quando chove pouco, é bem drenado,quando chove muito, fica alagado, e rasos.

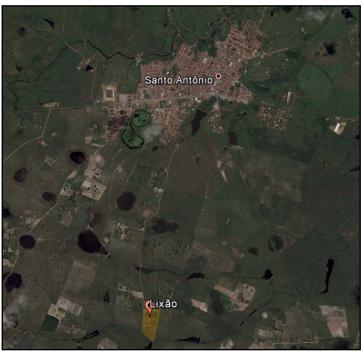


Figura 1. Localização do município de Santo Antônio na região agreste potiguar do estado do Rio Grande do Norte. Fontes: Elaborado pelos autores, 2017.

O lixão está situado em uma área rural do município de Santo Antônio – RN, instalado em um terreno de propriedade pública de aproximadamente 80 m², geograficamente situado na zona 25 M, sob as coordenadas E 224909,40 m e S 9298578,57 m, distante aproximadamente 2 km da cidade (Figura 2).

Foi realizada uma visita técnica ao lixão do Município de Santo Antônio, para registro das informações necessárias à identificação, caracterização e avaliação da atividade desenvolvida na área, a fim de subsidiar a proposição de medidas mitigadoras que possam guiar gestores públicos na adequação do Município de Santo Antônio à Lei nº 12,305 de 2 de Agosto de 2010 (BRASIL, 2010).

Foram realizados na área registros fotográficos das áreas vistoriadas e escavações aleatórias até 20 cm de profundidade para três amostras. Os equipamentos utilizados na visita *in loco* foram: máquina fotográfica digital Sony de 14,1 MG Pixels; GPS da marca Garmim e o programa Google Earth Pro, responsável pelas imagens de satélite da área.

Figura 2 - Localização da área ocupada pelo lixão de Santo Antôniona região agreste potiguar do estado do Rio Grande do Norte. Fonte: Google Earth, 2013.

Coleta de amostras e análise de atributos do solo

Foram coletadas 3 amostras de solos na profundidade de 0-20 cm. Cada amostra composta foi formada por 10 amostras simples. O solo foi seco ao ar, posteriormente destorroado e passado em peneira de 2 mm de abertura de malha para a retirada da terra fina seca ao ar (TFSA), a qual foi submetida a análises laboratoriais.

A densidade do solo (Ds) foi determinada pelo método da proveta, a densidade de partículas (Dp) pelo método do balão volumétrico(EMBRAPA,1997). A porosidade total do solo (Pt) foi estimada pela equação: [Pt = (1 - (Ds/Dp))*100] (EMBRAPA, 1997). Os atributos químicos foram analisados de acordo com métodos preconizados pela EMBRAPA (1999): pH em água e condutividade elétrica no mesmo extrato de leitura de pH.

Análise estatística dos dados

Os dados de atributos físicos e químicos dos solos amostrados foram analisados com a aplicação da estatística descritiva (SAS v. 8, 1999).

RESULTADOS E DISCUSSÃO

Atributos físicos e químicos do solo

O solo do lixão do município de Santo Antônio/RN apresentou atributos físicos e químicos (Tabela 1) distintos do solo sob mata nativa.

Tabela 1. Atributos do solo na camada de profundidade 0-20 do lixão do município de Santo Antônio no Agreste Potiguar

Ambiente	pН	CE	Dp	Ds	PT
	1:2,5	μS cm ⁻¹	g cm ⁻³	g cm ⁻³	%
Mata Nativa	$4,46 \pm 0,19$	$328,67 \pm 48,01$	$2,46 \pm 0,41$	$1,41 \pm 0,02$	$41,66 \pm 9,34$
	(4,30-4,67)	(280,00-376,00)	(2,03-2,85)	(1,39-1,43)	(31,41-49,67)
Lixão	$8,09 \pm 0,45$	$500,00 \pm 85,54$	$2,83 \pm 0,22$	$1,56 \pm 0,01$	$44,55 \pm 4,47$
	(7,63-8,53)	(416,00-587,00)	(2,64-3,07)	(1,55-1,57)	(40,81-49,50)

Ds = Densidade do solo; Dp = Densidade de partículas; PT = Porosidade total;

CE=Condutividade elétrica. Fonte: próprio autor.

A densidade do solo e a densidade de partículas foi maior no lixão do que na mata nativa (Tabela 1). Apesar da maior densidade do solo no lixão, a porosidade total do solo aumentou no lixão. Houve uma correlação positiva e altamente significativa entre a porosidade total e a densidade de partículas (r=0,93**). O aumento da densidade de partículas pode indicar a perdas erosivas de matéria orgânica que representa a fração solida leve do solo. O aumento da porosidade total remete a uma maior facilidade de infiltração de água nesse solo o que resulta numa maior produção de percolados e de gases de efeito estufa. Dessa forma, como processo de degradação física do solo é possível verificar nessa área em estudo indícios de compactação e erosão do solo.

A reação ácida do solo sob mata nativa foi alterada no solo do lixão (Tabela 1). O solo do lixão apresentou uma reação alcalina,o que é indicativo de saturação do complexo de troca por sais. A disposição de resíduos sólidos de forma inadequada provocou o aumento da condutividade elétrica, o que mais uma vez assinala a mudança química do complexo de troca que passou a ser saturado por sair em solução no solo do lixão. A alcalinização do solo foi o processo de degradação químico predominante nesse solo.

Vistoria da área de disposição final irregular do município

A disposição de resíduos sólidos urbanos produzidos pelo município de Santo Antônio é realizada na superfície do solo, sem o devido cuidado e posterior tratamento. Desse modo, a vegetação está em contato direto com o maciço de resíduos, o que amplia o potencial dessa difundir contaminação para cadeia trófica. Esse tipo de atividade é crime, visto que está em desacordo com a Lei nº 9,605/98, Lei de Crimes Ambientais, causando poluição e prejudicando a saúde humana, animal e vegetal (BRASIL, 1998).

É possível perceber que essa é uma atividade potencialmente poluidora e prejudicial ao meio ambiente, sendo assim, a mesma necessitaria de um licenciamento ambiental para implantação.

A área do lixão fica situada próxima a dois açudes (Figura 3). Os mais próximos estão a cerca de 23 m e 106 m, o que aumenta a probabilidade da água ser imprópria para uso. Os recursos hídricos próximos a lixões tornam-se impróprios devido ao escoamento superficial do chorume e também percolação no solo, onde com o tempo atinge aquíferos subterrâneos e recursos hídricos superficiais.

Figura 3. Localização da área de lixão e dos dois açudes próximos no município de Santo Antônio no Agreste Potiguar. Fonte: Amanda Caú Farias, 2015.

Foi possível verificar ainda que o açude mais próximo recebe facilmente o material percolado, como mostra a figura 4 e que o acúmulo de chorume fica bem próximo ao açude, mostrado na Figura 5. Esse acúmulo ocorre pela falta de abertura de valas e posterior recobrimento do maciço de resíduos, provocando o aparecimento de cavidades no terreno.

Figura 4. Material percolado no lixão de Santo Antônio-RN. Fonte: Amanda Caú Farias, 2015.

Figura 5. Acúmulo de chorume no lixão de Santo Antônio-RN. Fonte: Amanda Caú Farias, 2015.

A contaminação de corpos d'água acaba gerando um local propício para o aparecimento de vetores transmissores de doenças. Assim como, água contaminada é capaz de veicular agentes infecciosos ou substâncias capazes de agredir a saúde humana (SCHAZMANN et al., 2008). Algumas epidemias de doenças gastrointestinais têm como via de transmissão a água contaminada (SCURACCHIO; FILHO, 2011). Diante do estudo realizado por Ashbol (2004), a água quando contaminada e utilizada para consumo humano é capaz de acarretar doenças como diarréia, cólera e febre tifóide.

Esse tipo de poluição pode ser evitado a partir da implantação de algumas medidas preventivas que podem ser encontradas na NRB 13896 (ABNT, 1997), sendo algumas delas, a adequação da área para disposição correta de resíduos, onde há, entre outros, recobrimento diário com material excedente das operações de escavação, impermeabilização, sistema de drenagem de chorume, evitando o vazamento desse líquido para o solo; a determinação de umadistância mínima desse tipo de atividade para os corpos hídricos ou curso d'água, recomendado pela NRB 15849 (ABNT, 2010) a distância mínima de 200 metros. Assim como uma gestão mais ativa para operação correta do manejo dos resíduos sólidos e fiscalização de atividades irregulares, como preconiza a Política Nacional de Resíduos Sólidos.

Identifica-se que em volta da área de estudo encontram-se outros açudes que estão ligados por caminhos de drenagens naturais (Figura 6), ou seja, o material contaminado recebido pelo açude mais próximo, além de dispersar pelo solo é mais facilmente distribuído entre os açudes por essa conexão de drenagem, principalmente em período de chuva.

Figura 6. Açudes em volta do lixão de Santo Antônio ligados por drenagem natural Fonte: Google Earth, 2013.

Não há nenhum tipo de aterramento dos resíduos que são dispostos no lixão (Figura 7 e Figura 8), essa cobertura tem o objetivo de impedir o odor e aproximação de animais.

Figura 7. Vista da disposição de resíduos sólidos urbanos do município de Santo Antônio-RN. Fonte: Amanda Caú Farias, 2015.

Figura 8. Vista da disposição de resíduos sólidos urbanos do município de Santo Antônio-RN. Fonte: Amanda Caú Farias, 2015.

O local apresenta um grande acúmulo de chorume (Figura 13), líquido produzido pela decomposição da matéria orgânica, possui mal-cheiro e contêm substâncias químicas em grande quantidade. Esse líquido contamina o solo, consequentemente a vegetação da região, e alcança camadas profundas, chegando ao lençol freático. No caso do solo do município a facilidade de chegar ao lençol freático é facilitada, uma vez que o mesmo é raso e arenoso, facilitando a infiltração. O fato ocorre, dentre outros, pela falta de espalhamento e cobertura do lixo, criando local propício para acumular líquido (Farias, A, C, 2015).

A poluição das águas pelo chorume é capaz de causar endemias e intoxicações, devido a presença de organismos patogênicos e das substâncias tóxicas em altos níveis. Por ser um solo que alaga no período de chuva, há uma maior probabilidade dos contaminantes provenientes do lixão escoar e alcançar locais mais afastados, principalmente os açudes que se encontram interligados e ao redor do lixão.

O local no qual serve de destino para os resíduos sólidos do município de Santo Antônio não é adequado para essa atividade, diante dos critérios expostos na NBR 13896 (ABNT, 1997), primeiro porque não possui nenhuma forma de proteção adequada, visto que a cerca existente circula a propriedade como um todo, não apenas o lixão, o que não impede a circulação de pessoas no local. Não dispõe também de nenhuma proteção do solo, proporcionando contaminação do ambiente e da população no entorno. Segundo, não está de acordo com a PNRS, a qual determina que todos os lixões deveriam ser desativados pelas administrações públicas até Agosto de 2014, e substituídos por aterro sanitário (BRASIL, 2010), o que não ocorreu em Santo Antônio.

Figura 9. Acúmulo de chorume causado pela decomposição de matéria orgânica no lixão de Santo Antônio-RN. Fonte: Amanda Caú Farias, 2015.

CONCLUSÃO

- A avaliação dos atributos do solo indicou a ocorrência de processos de degradação física e químicas, como: compactação do solo, erosão do solo e alcalinização do solo.
- Para recuperação da área após sua desativação deve-se proceder a implantação de sistema de cobertura final composta também por uma camada impermeabilizante, de forma a minimizar a infiltração da água no maciço de resíduos, prevenindo erosão e a liberação parte dos gases tóxicos desse maciço para atmosfera, Um estudo realizado por Andreas et al. (2014), uma cobertura final de baixa permeabilidade reduz a infiltração da água e as emissões de gás de aterro emitido para o ambiente.
- Recomenda-se ainda a elaboração de um Plano de Gerenciamento de Resíduos Sólidos, sendo esse efetuado por geradores de resíduos sólidos, estabelecimentos comerciais e de prestação de serviço, conforme prever a Lei nº 12,305 de 2 de agosto de 2010, para que os resíduos sólidos sejam manejados e dispostos de forma correta.

REFERÊNCIAS

ALVES, O. G. et al, Qualidade do solo de cobertura do lixão desativado no município de Currais Novos-RN, UFRN. 2014.

ABNT - Associação Brasileira de Normas Técnicas. NBR 13896: Aterros Sanitários não perigosos - Critérios para projeto, implantação e operação. 1997.

ABNT - Associação Brasileira de Normas Técnicas. NBR 15849: Resíduos Sólidos Urbanos - Aterros Sanitários de pequeno porte - Diretrizes para localização, projeto, implantação, operação e encerramento. 2010.

BRASIL. Lei nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos e dá outras providências.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. **Manual de métodos de análise de solo**. 2. ed. rev. atual. 1997.

- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. **Levantamento exploratório**: Reconhecimento de Solos do Estado do Rio Grande do Norte. 1971.
- FARIAS, A. C. Laudo técnico realizado no lixão desativado do município de Santo Antônio/RN, UFRN, 2015
- IDEMA Instituto de Desenvolvimento Sustentável e Meio Ambiente. Perfil do seu município. 2008.
- LANZA, V. C. V. Caderno Técnico de reabilitação de áreas degradadas por resíduos sólidos urbanos. Belo Horizonte: Fundação Estadual do Meio Ambiente Fundação Israel Pinheiro, 2009.
- MELO, J. F. G. Influência do uso e ocupação do solo na qualidade do solo da zona ripária de um reservatóriono semiárido tropical.
- MELO, V. L. A.; JUCÁ, J. F. T. Estudos de referência para diagnóstico ambiental em aterros de resíduos Sólidos. In: CONGRESSO INTERAMERICANO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 27, 2000, Anais... Fortaleza-CE, 2000.
- REMON, E.; BOUCHARDON, J.-L.; CORNIER, B.; GUY, B.; LECLERC, J.-C; FAURE, O. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. **Environmental Pollution**, v. 137, n. 2, p. 316-323, 2005.
- SAS Institute. Statistical analysis system: Procedure guide for personal computer. Version 8. Cary, 1999.
- SCHAZMANN, R. D.; MENONCIN, F.; ELPO, E. R. S.; GOMES, E. C. Avaliação da qualidade bacteriológica da água consumida no Campus III (Jardim Botânico) da Universidade Federal do Paraná, Curitiba, Brasil. **Visão Acadêmica**, v. 9, n. 2, p. 65-70, 2008.
- SEMARH Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos. Plano Estadul de Gestão Integrada de Resíduos Sólidos do Rio Grande do Norte. Relatório Síntese, 2012.
- VALE, V. C. B. Laudo técnico realizado no lixão desativado do município de Nova Cruz/RN, UFRN, 2015.