Eixo Temático ET-06-001 - Energia

UTILIZAÇÃO DA ENERGIA SOLAR NA PRODUÇÃO DE BIODIESEL

Luiz Antonio Pimentel Cavalcanti¹, Fabiano Almeida Nascimento²

RESUMO

A aplicação de fontes de energias renováveis solar e eólica, tem chamado atenção no que diz respeito ao aumento da sua viabilidade técnico-financeira em aplicações que visem à redução de custos operacionais e de manutenção em processos industriais. Considerando os incessantes esforços para substituição do diesel de origem fóssil pelo biodiesel aliada desvantagem econômica inerente à utilização deste biocombustível, a redução de custos durante a produção do biodiesel se faz necessária para a popularização e utilização em larga escala desta fonte energética. Neste sentido, o presente trabalho apresenta o processo de design, dimensionamento e construção de um protótipo de reator para produção de biodiesel sustentável alimentado energeticamente por um coletor solar construído com materiais reutilizados e energizado eletricamente por um sistema fotovoltaico off-grid. A construção do protótipo ocorreu através da junção de subsistemas de aquecimento solar, geração fotovoltaica, agitação e bombeamento que, juntos, caracterizaram todo sistema necessário para produção de biodiesel através do processo de transesterificação por rota metílica. O estudo solarimétrico e fotovoltaico foi feito levando em consideração o local de instalação e a previsão cargas elétricas do sistema produtivo de biodiesel objetivando o devido suprimento elétrico e térmico. Ao término da construção do protótipo, foram realizados testes para garantir a necessária transferência de calor para a reação química de transesterificação e o correto funcionamento do circuito elétrico, visando atestar a confiabilidade de todo sistema bem como a possibilidade de sua replicabilidade em uma maior escala. Observou-se a eficiência elétrica, comparando-a com sistemas convencionais que utilizam a energia do Sistema Interligado Nacional e o produto final foi avaliado com auxílio da técnica de cromatrografia gasosa mostrando que o biodiesel foi produzido satisfatoriamente, apresentando rendimento em termos do teor de éster de 97,6%, resultado superior ao recomendado pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) em sua Resolução nº 45/2014.

Palavras-chave: Biodiesel; Energia Fotovoltaica; Sustentabilidade; Coletor Solar.

INTRODUÇÃO

Grande parte da energia consumida no mundo é oriunda do gás natural, petróleo e carvão mineral. No entanto, essas fontes possuem previsão de esgotamento futuro por possuírem caráter não renovável, dessa forma, é de suma importância que sejam buscadas fontes alternativas de energia, no intuito de atender a demanda energética mundial, além de diminuir os impactos ambientais causados pelas fontes fósseis (SANTOS et al., 2015).

Dentre os tipos de fontes renováveis de energia existentes até o momento, o biodiesel vem se apresentando como um forte candidato para substituir o diesel, pois o mesmo traz uma concepção de produção de energia renovável além de aspectos sociais e ambientais para o desenvolvimento sustentável. Entretanto, o seu elevado custo operacional ainda é uma problemática enfrentada a essa substituição (CARVALHO & RIBEIRO, 2014).

A reação de transesterificação normalmente é favorecida quando é submetida a um aquecimento, que comumente é fornecido através de um banho termostático utilizando energia elétrica de rede convencional, o que torna o processo não atrativo economicamente

¹Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA, Campus Paulo Afonso, Bahia. E-mail: luiz.cavalcanti@ifba.edu.br.

²Instituto Federal de Educação, Ciência e Tecnologia da Bahia – IFBA, Campus Paulo Afonso, Bahia. E-mail: fabianoalmeidaeng@gmail.com.

(REFAAT,2010). Esse processo pode ser realizado através de coletores solares, construídos por materiais recicláveis como garrafa de Polietileno Tereftalato (PET) e embalagens do tipo *tetra pak*, com o propósito de minimizar os custos com processo de aquecimento, bem como torná-lo potencialmente sustentável (CAVALCANTI, 2016).

A utilização da energia solar para aquecimento e geração de energia apresenta benefícios econômicos, energéticos, reduzindo a demanda energética do sistema interligado nacional. Do ponto de vista ambiental, contribui para a redução da emissão de carbono para a atmosfera e minimiza a quantidade de gases de efeito estufa (JACOB FILHO, 2016).

A utilização de painéis fotovoltaicos para geração de eletricidade se mostra atrativo ambientalmente e economicamente, conforme analise de investimentos realizados e simulados em diversas aplicações. No Campus Central da Universidade Federal do Rio Grande do Norte (UFRN), por exemplo, o sistema utilizado de 3,5 kWp, se mostrou economicamente viável, devido ao período de retorno simples do investimento obter-se em aproximadamente 11 anos, proporcionando uma economia em energia elétrica de R\$ 172,58 por cada MW/h não consumidos ou uma economia ao longo do ciclo de vida de R\$ 1.314.867,00 anual, bem como uma diminuição das emissões de Gases de Efeito Estufa (GEE) de aproximadamente 442,1 toneladas ou 40,7 hectares de CO₂ (FONSECA, 2016).

O presente trabalho tem como objetivo realizar o dimensionamento e montagem de um sistema fotovoltaico bem como o design, prototipagem e análise de um sistema de aquecimento solar com materiais reutilizados focando sua aplicação para a produção de biodiesel, realizando um comparativo entre o sistema de alimentação proposto e o sistema de alimentação convencional, em termos de economia energética e emissão de GEE.

OBJETIVO

Realizar o dimensionamento e montagem de um protótipo de reator em batelada para produção de biodiesel com demandas energéticas atendidas por um aquecimento solar e energia fotovoltaica.

MATERIAIS E MÉTODOS

A metodologia científica aplicada a esta pesquisa iniciou-se com a revisão bibliográfica sobre os temas energéticos no que diz respeito à energia elétrica e térmica, bem como o processo de produção de biodiesel. A partir da revisão bibliográfica, foi feito a prototipagem do sistema e a análise através de uma pesquisa exploratória.

Os componentes e equipamentos projetados para construção de todo o sistema de produção de biodiesel foram levantados planejando-se quais os materiais seriam necessários para construção dos módulos do sistema visando à diminuição do custo global do processo de produção do biodiesel e a exequibilidade do projeto em termos práticos, técnicos e financeiros. Determinou-se, portanto, os seguintes subsistemas:

- A. Aquecimento;
- B. Agitação;
- C. Sistema de potência de energia elétrica;
- D. Bombeamento;
- E. Controle de velocidade do agitador;

SISTEMA DE AQUECIMENTO SOLAR (COLETOR)

A reação de transesterificação alcalina homogênea geralmente necessita de circulação de água aquecida em um reator encamisado. Buscando a viabilidade técnica, redução do consumo/demanda elétrica e diante da disponibilidade de determinados materiais, decidiu-se que o sistema de aquecimento se daria através de um coletor solar sustentável baseado no Manual de Construção e Instalação de Aquecedor Solar Composto de Produtos Descartáveis da Celesc segundo "ALANO, 2009", constituído basicamente de garrafas PET, caixas de leite *Tetra Pak* e canos de Policloreto de Vinila (PVC), pintados em preto fosco, sendo o

dimensionamento do sistema de aquecimento feito a partir da previsão da quantidade nominal de produção de biodiesel do protótipo (2,2L de biodiesel por batelada).

Depois de finalizada a construção do protótipo, a variação de temperatura do projetado volume de água, a ser aquecida pelo coletor solar para aquecimento da reação, foi mensurado em intervalos de 15 minutos com um termômetro digital enquanto o sistema era exposto ao sol, sendo estes dados analisados observando o alcance da temperatura ideal para reação a fim de determinar se a quantidade de calor absorvido pelo coletor seria suficiente para atender as demandas energéticas do processo no que diz respeito ao aquecimento dos reagentes na faixa de temperatura de 40°C a 50°C para melhor eficiência da reação de transesterificação.

Algumas das etapas da construção do sistema de aquecimento são mostradas na Figura 1. O sistema foi dimensionado para aquecimento de um volume de água de 10L e por isso 3 colunas com 2 garrafas PET com capacidade volumétrica de 02 litros cada, foram projetadas e construídas, conforme orientações do Manual de Construção e Instalação de Aquecedor Solar Composto de Produtos Descartáveis da Centrais Elétricas de Santa Catarina (CELESC) (ALANO, 2009).

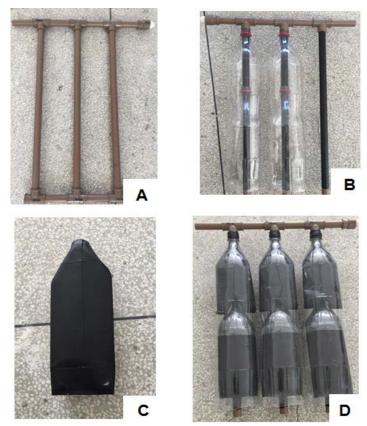


Figura 1. Etapas da construção do coletor solar sustentável. Fonte: Autoria Própria.

Os materiais utilizados para a produção do sistema de aquecimento do reator são apresentados na Tabela 1.

Material	Quantidade	Situação
Garrafas PET 2 Litros	06 unidades	Reutilizado
Tubulação PVC ½ polegada	05 metros	Novo
Caixas de Leite Tetra Pak	06 unidades	Reutilizado
Mangueira transparente	02 metros	Novo
Balde 20 Litros	01 unidade	Reutilizado
Conexões Joelho para tubulação PVC	06 unidades	Novo
Conexões "T" para tubulação	06 unidades	Novo

Tabela 1. Materiais utilizados para montagem do sistema de aquecimento solar.

Fonte: Autoria Própria.

SISTEMA DE GERAÇÃO FOTOVOLTAICA

O estudo solarimétrico e fotovoltaico foi baseado nas informações contidas no Manual de Engenharia para Sistemas Fotovoltaicos do Centro de Referência em Energia Solar e Eólica Sérgio de Salvo Brito (CRESESB) e do Centro Pesquisa de Energia Elétrica (CEPEL) (Pinho e Galdino, 2014). (explicitados na seção 4, levando em consideração a previsão do consumo das cargas elétricas). A Figura 2 apresenta o esboço do esquema de montagem elétrica do protótipo.



Figura 2. Esquemática do circuito elétrico a ser utilizado no protótipo. Fonte: Autoria Própria.

O dimensionamento do sistema fotovoltaico se deu pelo método de pior mês, visando garantir a quantidade de energia suficiente independente da situação de pior irradiação solar. Os valores de potência elétrica dos equipamentos utilizados foram levantados e uma projeção do consumo em Wh feita para todo o processo de produção do biodiesel, sendo este valor, por consequência, a potência mínima do sistema fotovoltaico.

Os materiais utilizados para a montagem do sistema de geração fotovoltaica são apresentados no Quadro 2.

Material	Quantidade	Situação
Controlador de Carga 12V 10A	01 unidade	Novo
Inversor de Frequência CC/CA 400W 12V/127V	01 unidade	Novo
Painel Solar Fotovoltaico 110Wp 14,4V	01 unidade	Novo
Bateria Estacionária 45Ah 12V	01 unidade	Novo
Cabeamento elétrico 6 mm²	10 metros	Reutilizado

Quadro 2. Materiais utilizados para montagem do sistema fotovoltaica.

Fonte: Autoria Própria.

REATOR SUSTENTÁVEL, BOMBA E AGITADOR

Considerando a ausência de um reator para a produção de biodiesel, o presente estudo também visou dimensionar e construir o protótipo de um reator dotado de um sistema de agitação que tenha capacidade produtiva de 2,2L de biodiesel por batelada. Visando levar o sistema para o mais próximo possível da operação real de uma usina de biodiesel, definiu-se a autonomia do sistema em 12 horas através do sistema fotovoltaico, podendo realizar até 10 bateladas por dia.

O reator teve sua concepção baseada na ilustração apresentada na Figura III, sendo dotado de sistema de agitação, concebido a partir do dimensionamento baseado nos textos de operações unitárias na literatura especializada de acordo com "FOUST, 1982" e montado a partir de materiais residuais da construção civil, além de um motor de ventilador, um rolamento e um recipiente de vidro. O reator utilizado durante os experimentos é retratado na Figura 3.

Figura 3. Reservatório reacional com sistema de agitação inserido. Fonte: Autoria Própria.

O sistema de bombeamento foi montado com uma bomba reutilizada de máquina de lavar e um sistema de mangueiras isoladas termicamente.

Os materiais utilizados para a montagem do sistema de agitação são apresentados no Quadro 3.

	Quantidade	Situação
Eletrobomba Universal 0,75W	01 unidade	Reutilizado
Motor elétrico CA 127V 40W	01 unidade	Reutilizado
Recipiente de vidro (05 litros)	01 unidade	Reutilizado
Chapa de Zinco (20cm x 20cm)	01 unidade	Reutilizado

Quadro 3. Materiais utilizados para montagem do sistema de agitação.

Fonte: Autoria Própria.

MONTAGEM FINAL E ANÁLISE DE DADOS

O sistema final apresenta configuração disposta conforme Figura 4 seguindo as orientações de segurança durante a montagem. Após a montagem de todos os subsistemas o sistema geral foi submetido ao primeiro teste de produção de biodiesel sendo este analisado para observância da eficácia da produção e qualidade do produto final. O índice que verifica a eficiência da conversão dos reagentes químicos em biocombustível é o teor de éster, que teve sua taxa em porcentagem determinada através do processo de cromatografia gasosa realizada no laboratório da Universidade Federal do Pernambuco, excluindo-se a análise de demais parâmetros de qualidade, pois estes não são válidos para comprovar a eficácia e eficiência do processo produtivo.

Considerando os parâmetros elétricos medidos, uma análise foi realizada identificando a diferença de potência do sistema proposto e do sistema convencional levando em consideração a eficiência energética, consumo de energia elétrica, confiabilidade do sistema, e valor ambiental agregado.

Foi ainda verificado o controle de velocidade do motor do agitador através do circuito de variação de tensão AC, sendo todas as variáveis elétricas mensuradas com o multímetro digital DT830D, as medidas térmicas foram feitas com o termômetro digital tipo espeto modelo JR-1.

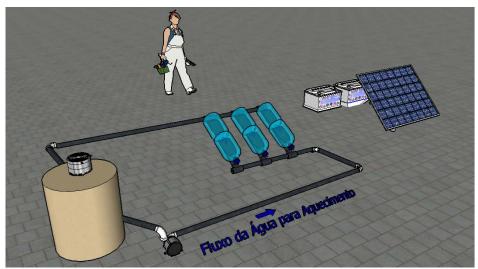


Figura 49. Esquema tridimensional do protótipo de reator sustentável. Fonte: Autoria Própria.

_

¹ O processo de análise via cromatografia não está descrito neste trabalho, pois foi realizado por terceiros na Universidade Federal do Pernambuco.

RESULTADOS E DISCUSSÃO

O sistema construído teve como objetivo observar os incrementos ambientais do processo de produção de biodiesel a partir da utilização de energia solar e nesse sentido, podemse destacar duas principais diferenças entre o sistema proposto e um sistema convencional de mesma capacidade produtiva: A utilização de um coletor solar para obtenção de energia térmica e a utilização de um sistema fotovoltaico para geração de energia elétrica.

Ambas as situações trazem incrementos ambientais para o processo, visto que não há utilização de energia elétrica do Sistema Interligado Nacional e redução das perdas inerentes ao mesmo. Ressaltasse também a utilização de energia 100% renovável, situação inexistente na matriz energética brasileira, que ainda tem termelétrica baseadas em combustíveis fósseis para atender as demandar elétricas do país.

Para um sistema convencional, com aquecimento a partir de resistências elétricas, estipula-se a utilização de uma resistência de 143 W continuamente durante a produção de biodiesel. Como no sistema proposto substitui-se a resistência elétrica pela energia obtida a partir do coletor solar, tem-se um ganho em termos energéticos de 0,143 kWh por batelada e 514,8 kWh por ano considerando a dimensão e quantidade de bateladas diárias definidas para o sistema proposto neste trabalho (NASCIMENTO et al., 2006).

Numa projeção ao sistema de produção de biodiesel apresentando em Nascimento (2006), onde se determina a utilização de resistências que totalizam 13 kW para uma capacidade produtiva de 200L de biodiesel, tem-se, quando da substituição do sistema de aquecimento por resistências elétricas, uma economia de 13kWh por batelada e 46.800 kWh por ano.

A emissão de CO₂ durante o ciclo de vida de um sistema como o proposto é muito menor quando comparado ao sistema convencional. Considerando somente a diferença de consumo elétrico citado no paragrafo anterior, de 46.800 kWh/ano para um sistema com capacidade produtiva de 200 litros de biodiesel, levando em conta também a emissão média de CO₂ equivalente para a energia produzida pelo SIN no ano de 2016 de 0,0817 kgCO₂eq/kWh (MCTI,2017), tem-se um ganho em emissão de CO₂ de 3.823,56 kg/ano por conta da substituição de um sistema de aquecimento solar pelo elétrico.

CONSIDERAÇÕES FINAIS

Tomando como base a usina de produção de biodiesel – 200 litros de capacidade por batelada – apresentada em Nascimento et al., 2006, que utiliza resistências de 7kW e 6kW para aquecimento reacional, pôde-se projetar uma diminuição de consumo de energia elétrica, quando da substituição das resistências por coletores solares, de 13kWh por batelada e 46.800 kWh/ano considerando uma produtividade de 10 bateladas de 01 hora por dia durante 365 dias no ano.

A sistemática sustentável de produção do biodiesel se mostrou de alta confiabilidade, observado que o sistema manteve-se estável em todos os testes realizados, indicando a possibilidade de aumento de escala no equipamento. O biodiesel produzido apresentou rendimento satisfatório, estando dentro dos parâmetros de qualidade exigidos pela ANP, em termos do teor de éster que foi de 97,6% para a produção no primeiro teste.

Destaca-se o ganho ambiental, social e energético quando da utilização de sistemas de geração fotovoltaica e de aquecimento solar para produção de biodiesel em quatro aspectos principais: Diminuição da carga instalada para sistemas que substituem a resistência elétrica por um sistema de aquecimento solar; Diminuição das perdas energéticas nas linhas de distribuição/transmissão pelo uso da Microgeração distribuída; Geração de emprego e renda familiares tendo em vista a produção de coletores solares sustentáveis; Reutilização de resíduos sólidos urbanos durante a produção de coletores solares sustentáveis.

REFERÊNCIAS

ALANO, J. A. Manual sobre a construção e instalação do aquecedor solar com descartáveis. CELESC, 2009. Disponível em:http://josealcinoalano.vilabol.uol.com.br/manual.htm Acesso em: 20 mar. 2017.

SANTOS. R.C.O.; BARBOSA, G.L.; MACHADO, A.M.C.; CREMASCO, C.P. Automatização residencial e utilização de fontes de energia limpa para diminuição do consumo nas redes elétricas. **Fórum Ambiental da Alta Paulista**, v. 11, n 3, 2015.

CARVALHO, H.M.; RIBEIRO, A.B. Biodiesel: vantagens e desvantagens numa comparação com o diesel convencional. **Essentia**, v. 2, n.1, p. 49-53, 2014.

CAVALCANTI, L. A. P. Produção de Biodiesel Metílico de Soja com o Auxílio de um Coletor Solar Sustentável. **Revista Principia - Divulgação Científica e Tecnológica do IFPB**, n. 29, p. 105-109, 2016. Disponível em: https://periodicos.ifpb.edu.br/index.php/principia/article/view/356>. Acesso em: 24 jul. 2016. https://doi.org/10.18265/1517-03062015v1n29p105-109

FONSECA, L. F. Viabilidade econômica da implantação de painéis fotovoltaicos para redução do consumo de energia elétrica no *campus* central da Universidade Federal do Rio Grande do Norte. Natal, 2016. 19f. Dissertação (Graduação em Ecologia) - Universidade Federal do Rio Grande do Norte, 2016

FOUST, A. Princípios das Operações Unitárias. 2. ed. São Paulo: LTC, 1982.

JACOB FILHO, P. Estudo do rendimento térmico de um aquecedor solar parabólico redondo para viabilidade de uso comercial e residencial. Guaratinguetá-SP, 2016. 67f. Dissertação (Mestrado em Engenharia Mecânica) - Faculdade de Engenharia do Campus de Guaratinguetá, Universidade Estadual Paulista, 2016.

MCTI - Ministério da Ciência, Tecnologia e Inovação. **Fatores de emissão de CO₂ para utilizações que necessitam do fator médio de emissão do Sistema Interligado Nacional do Brasil**. Brasília: MCTI. Disponível em: http://www.mct.gov.br/index.php/content/view/74694.html>. Acesso em: 10 maio 2017.

NASCIMENTO, U. M. et al. Montagem e implantação de usina piloto de baixo custo para produção de biodiesel. Anais do 1º Congresso da Rede Brasileira de Tecnologia de Biodiesel, Brasília, 2006. p. 147-150.

PINHO, J. T.; GALDINO, M. A. **Manual de engenharia para sistemas fotovoltaicos**. Rio de Janeiro: CEPEL-CRESESB, 2014.